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Abstract We consider the steady state of a one dimensional diffusive system, such as the
symmetric simple exclusion process (SSEP) on a ring, driven by a battery at the origin or
by a smoothly varying field along the ring. The battery appears as the limiting case of a
smoothly varying field, when the field becomes a delta function at the origin. We find that in
the scaling limit the long range pair correlation functions of the system driven by a battery
are very different from the ones known in the steady state of the SSEP maintained out of
equilibrium by contact with two reservoirs, even when the steady state density profiles are
identical in both models.

Keywords Non-equilibrium · Long range correlations · Canonical measure · Fluctuating
hydrodynamics

1 Introduction

There are notoriously few fully analyzable models of non trivial (interacting) current carry-
ing systems [22, 26] in non-equilibrium steady states (NESS). The few exceptions are almost
all one dimensional lattice gases evolving according to stochastic jump processes and inter-
acting via exclusions, in contact with particle reservoirs at different densities. Among the
simplest of such models is one of particles on a lattice of N sites (i = 1, . . . ,N ) in which
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the bulk dynamics are given by the symmetric simple exclusion process (SSEP) and sites 1
and N are in contact with particle reservoirs. In the case of reservoirs at equal densities the
stationary state satisfies detailed balance. For reservoirs at unequal densities, say ρa on the
left and ρb on the right (ρa > ρb), the matrix method gives a full microscopic description
of the NESS including the explicit form of the correlation functions ρk(i1, . . . , ik;ρa,ρb,N)

[15] and allows one to calculate the large deviation function (LDF) in the hydrodynamical
scaling limit, N → ∞, i/N → x ∈ [0,1] [1, 2, 13]. One can also obtain, in this scaling limit
(with diffusively scaled time), the time evolution of the system in a non stationary state via a
diffusion equation for typical density profiles as well as the LDF for time evolving densities
and currents [1, 3, 5, 6, 11].

In attempts to further extend our understanding of such non-equilibrium systems, we
investigate here the stationary state of a system of M particles on a ring of N sites with
exclusion. The jump rates to the right and left (counter clockwise, clockwise) for a particle
at site i are pi and qi , i = 1, . . . ,N . We shall be interested, as usual, in the case N � 1,
M/N = ρ̄. We consider two types of situations:

1. The “battery” case: the system evolves according to the SSEP except that there is a “bat-
tery” at bond (N,1), i.e. pi = 1 for i �= N , qi = 1 for i �= 1 and pN = p, q1 = q with p

and q independent of N .
2. The smooth asymmetric case (WASEP) pi = 1 + 1

N
E(i/N) and qi = 1 − 1

N
E(i/N) with

E a smooth field of period 1.

(Combination of both cases can also be treated.)
In the first case, the microscopic “battery” at (N,1) induces a NESS with a particle cur-

rent of magnitude proportional to 1/N and a concomitant linear density profile. This looks
very similar to what happens in the open system and would suggest that the measures for
the reservoirs and battery driven systems would be similar when N � 1, in the same spirit
as the difference between “canonical” and “grand-canonical” nature of the two systems dis-
appears in equilibrium, when p = q and M/N → ρa = ρb . This is indeed the case to the
leading order in N . Local equilibrium holds in both models and implies that both steady
state statistics are given locally by a product Bernoulli measure. Here, we will focus on the
corrections to this local Bernoulli measure and on the long range correlations. We will see
that the two NESS measures differ much more than the corresponding equilibrium ones. The
complicated interplay between the non-equilibrium long-range correlations, the canonical
constraint and the driving mechanism leads to two-point correlation functions with different
structure for the reservoir and battery driven systems. In particular, the long range correla-
tions are much more singular for the battery model than those in the open system. A variant
of this model with a macroscopic battery was introduced in [19] and a related dynamics with
colliding hard spheres was also considered in [9].

In the second case, the macroscopic stationary density profile ρ̄(x) then satisfies the
general equation for driven diffusive systems

∂xρ̄(x) − 2E(x)ρ̄(x)
(
1 − ρ̄(x)

) = −J , (1.1)

where J is the stationary current which is independent of x. Equation (1.1) corresponds to
the stationary solution of the diffusion equation with a drift

∂tρ = ∂2
xρ − ∂x (2E(x)ρ(1 − ρ)) . (1.2)

The first case can be thought of as a very singular limit of the second one when E(x)

becomes a δ-function localized at the origin.
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We will also consider the Zero Range Process (ZRP) driven by a “battery”. This micro-
scopic dynamics is simpler than the SSEP driven by a battery, as the NESS of the ZRP on
the ring is a product measure constrained to having a fixed number of particles. There are
no long range correlations in the non-equilibrium measure of the ZRP with reservoirs [23]
and the long range correlations of the ZRP driven by a battery are similar to those found for
an equilibrium system with the constraint that the total particle number is fixed.

The outline of the rest of the paper is as follows. In Sect. 2, we define the microscopic
models. By using a macroscopic approach, the two-point correlation functions are computed
for the battery model in Sect. 3 and for a slowly varying field in Sect. 4. These results are
then compared, in Sect. 5, to the two-point correlation functions of an open system in contact
with reservoirs. Finally the invariant measure of the ZRP driven by a battery is computed
in Sect. 6. Some technical details concerning the solution of the macroscopic equations are
given in the appendices.

2 The Models

2.1 The Battery Model

We consider the SSEP on the ring {1,N} containing M particles with jump rates 1 to the
left and to the right except at the bond (N,1) where the jump rate from N to 1 is p and
from 1 to N is q . These modified asymmetric rates act as a battery which forces a current of
particles through the system. We assume that p > 0 and q > 0.

In the absence of the battery (p = q = 1), the stationary state is one in which all the(
N

M

)
configurations have equal weight. For N → ∞, M = ρ̄N , this corresponds locally to

a product Bernoulli measure with density ρ̄. Denoting by ν
ρ̄

i the Bernoulli measure at site
i with density ρ̄, the product measure

⊗
i∈Z

ν
ρ̄

i is invariant wrt the SSEP dynamics for any
constant density ρ̄.

For the SSEP on Z with a battery at the bond (0,1), the invariant measure remains a
product but the density is discontinuous across the battery. The invariant measures on Z are

νρ−,ρ+ =
⊗

i≤0

ν
ρ−
i

⊗

i≥1

ν
ρ+
i , (2.1)

where the densities ρ−, ρ+ (at sites 0 and 1) satisfy the equation

pρ−(1 − ρ+) = qρ+(1 − ρ−). (2.2)

These measures satisfy detailed balance and there is no current flowing in the system.
On the ring when p �= q , the steady state measure is not known. Taking averages with

respect to the time evolving measure μN,τ , we obtain

i �= 1,N, ∂τμN,τ

(
ηi

) = μN,τ

(
ηi+1

) + μN,τ

(
ηi−1

) − 2μN,τ

(
ηi

)
,

∂τμN,τ

(
η1

) = μN,τ

(
η2

) − μN,τ

(
η1

) + pμN,τ

(
ηN(1 − η1)

)

− qμN,τ

(
η1(1 − ηN)

)
, (2.3)

∂τμN,τ

(
ηN

) = μN,τ

(
ηN−1

) − μN,τ

(
ηN

) − pμN,τ

(
ηN(1 − η1)

)

+ qμN,τ

(
η1(1 − ηN)

)
.
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It follows immediately that in the stationary state, the average density profile is linear

〈ηi〉 = 〈η1〉 + i − 1

N − 1

(〈ηN 〉 − 〈η1〉
)
, (2.4)

where 〈·〉 stands for the stationary measure and the mean density ρ̄ = M
N

satisfies

ρ̄ = 1

2

(〈ηN 〉 + 〈η1〉
)
. (2.5)

There is also a stationary average current q̂ of order 1/N

q̂ = 1

N

(〈η1〉 − 〈ηN 〉), (2.6)

and one has the identity

p〈ηN(1 − η1)〉 − q〈η1(1 − ηN)〉 = q̂. (2.7)

For finite N , the relations (2.4) and (2.7) do not allow the determination of the average
profile 〈ηi〉 as (2.7) involves the correlation between sites N and 1. If one assumes however
that local equilibrium holds for large N then the system will behave at the battery as if it
was described by the measure (2.1). Thus one expects that for large N

〈ηNη1〉 ≈ 〈η1〉〈ηN 〉 = ρ+ρ−, (2.8)

with ρ± satisfying

pρ−(1 − ρ+) = qρ+(1 − ρ−),
ρ+ + ρ−

2
= ρ̄, (2.9)

where we used (2.5) and (2.7). This implies that in terms of the macroscopic variable x =
i/N , that the steady state density ρ̄(x) is linear with a discontinuity at the battery

ρ̄(x) = ρ+ + (ρ− − ρ+)x, with ρ̄(0) = ρ+, ρ̄(1) = ρ−. (2.10)

The local equilibrium (2.8) can be justified [7] and one can prove that after space/time
rescaling, the microscopic equations lead to a macroscopic description of the local density
by the heat equation. The battery yields non-linear boundary conditions

∀t > 0, x ∈ ]0,1[,
⎧
⎨

⎩

∂tρ(t, x) = ∂2
x ρ(t, x),

pρ(t,1)(1 − ρ(t,0)) = qρ(t,0)(1 − ρ(t,1)),

∂xρ(t,0) = ∂xρ(t,1),

(2.11)

where ρ(t, x) stands for the local density at the macroscopic time t and position x.

2.2 The Case of a Slowly Varying Field

In contrast to the battery where the driving force is localized on a single bond, we will
now consider the case of a smoothly varying macroscopic field E(x) along the ring. The
microscopic model is now the weakly asymmetric simple exclusion process of M particles
on a ring of N sites. A particle on site i jumps to its neighboring site on its right at rate pi
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and to its neighboring site on its left at rate qi provided that the target site is empty. By weak
asymmetry, we mean that pi and qi have the following scaling dependence on the system
size N

pi = 1 + 1

N
E

(
i

N

)
, qi = 1 − 1

N
E

(
i

N

)
.

When the integral of E(x) over the circle is non zero, the system will reach a non-
equilibrium steady state for every fixed N .

The time evolution of the microscopic mean density is given by

∂τμN,τ (ηi) = pi−1μN,τ

(
ηi−1(1 − ηi)

) − qiμN,τ

(
ηi(1 − ηi−1)

)

− piμN,τ

(
ηi(1 − ηi+1)

) + qi+1μN,τ

(
ηi+1(1 − ηi)

)
, (2.12)

where μN,τ (·) is the expectation value wrt the time evolving measure.
Assuming that, for large N , the density profile takes the following scaling form

μN,τ

(
ηi

) = ρ

(
τ

N2
,

i

N

)
, (2.13)

and the correlation functions scale as

μN,τ

(
ηiηj

) − μN,τ

(
ηi

)
μN,τ

(
ηj

) = 1

N
C

(
τ

N2
,

i

N
,

j

N

)
, (2.14)

one can show that for x = i/N, t = τ/N2

pi−1μN,τ

(
ηi−1(1 − ηi)

) − qiμN,τ

(
ηi(1 − ηi−1)

)


 1

N
[−∂xρ(t, x) + 2E(x)ρ(t, x)(1 − ρ(t, x))] + 1

N2
W(t, x),

where W depends on the two-point correlation function C defined in (2.14). One then gets
from (2.12) the macroscopic evolution equation

∂tρ(t, x) = ∂x [∂xρ(t, x) − 2E(x)ρ(t, x)(1 − ρ(t, x))] . (2.15)

This is the viscous Burgers equation on a ring x ∈ [0,1]. A mathematical derivation of (2.15)
can be found in [20, 28].

The macroscopic evolution of the battery model (2.11) can then be recovered by taking a
large localized field E(x) at the origin with a given integral equal to K . According to (2.15)
this leads, in the limit, to a jump of density across the origin

log
ρ+

1 − ρ+ − log
ρ−

1 − ρ− =
∫ ρ+

ρ−

dρ

ρ(1 − ρ)
= 2K.

This expression is equivalent to (2.2) with 2K = log(p/q). The effect of the battery should
be understood as a force which maintains a fixed difference of chemical potentials across
the origin.
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2.3 The Zero Range Process and the Moving Battery Model

In Sect. 6.1, we will discuss the invariant measure of a ZRP driven by a battery. The mi-
croscopic dynamics is defined as follows. At site i, the occupation number ηi can take any
integer value and a particle at site i performs a jump to the left or to the right with rate
g(ηi), where the function g is non-decreasing (to avoid the condensation phenomenon [17])
and g(0) = 0. The driving force is modeled by modifying the jump rates between sites 1
and N : a particle jumps from 1 to N with rate qg(η1) and from N to 1 with rate pg(ηN).
The hydrodynamic limit for this model on Z was derived in [21].

The ZRP driven by a battery is related to the SSEP on a ring driven by a “moving battery”,
i.e. a special tagged particle with asymmetric jump rates p and q . One can think of this
particle as being driven by an external field E with p/q = exp(2E) [10, 18, 21]. A current
will be induced by the moving battery. The mapping between the two models was exploited
by [21] to study the motion of this tagged particle in Z. More precisely, the SSEP with a
moving battery and with M particles on the ring of length N can be mapped onto a ZRP on a
ring of length M with N − M particles and with the specific rates g(n) = 1n≥1. Let 1 be the
index of the asymmetric particle in the SSEP and 2, . . . ,M the indices of the other particles,
then the ZRP variable ηi stands for the number of empty spaces ahead of particle i.

3 The Macroscopic Approach for the Battery Model

A generic property of non-equilibrium systems, maintained in a steady state by contact with
reservoirs at unequal chemical potentials, is the presence of long range correlations [4, 14,
16, 25, 27]. The steady state correlations can be predicted from a macroscopic approach
based on “fluctuating hydrodynamics” [14, 24, 27]. Alternatively, one can derive the density
large deviation functional for the steady state and then recover the correlations by expanding
the functional near the steady state [1, 4, 8, 11]. We will apply the latter approach to compute
the correlations in the battery model introduced in Sect. 2.1.

3.1 The Hydrodynamic Large Deviations

After rescaling the space by N (i = xN ) and the time by N2 (τ = N2t ), the microscopic
system can be described at the hydrodynamic scale by two macroscopic functions the local
density ρ(t, x) and the local current of particles q(t, x) which obey the conservation law

∂tρ(t, x) = −∂xq(t, x). (3.1)

The probability of observing a joint deviation of the current and the density in our micro-
scopic system depends exponentially on the system size. More precisely, the probability of
observing an atypical macroscopic trajectory (ρ(t, x), q(t, x))0≤t≤T during the macroscopic
time interval [0, T ] scales like

P[0,T N2]
(
(ρ(t, x), q(t, x))

)

 exp

(
−N F̂[0,T ]

(
ρ,q

))
,

where the large deviation functional is given by

F̂[0,T ]
(
ρ,q

) =
∫ T

0
dt

∫ 1

0
dx

(q(t, x) + ∂xρ(t, x))2

2σ(ρ(t, x))
. (3.2)
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Here σ(u) = 2u(1 − u) and the density has to satisfy the conditions

pρ(t,1)(1 − ρ(t,0)) = qρ(t,0)(1 − ρ(t,1)),

∫ 1

0
dx ρ(t, x) = ρ̄. (3.3)

If (ρ(t, x), q(t, x)) does not satisfy (3.1) or if the conditions (3.3) are not satisfied (for a
set of times with non-zero Lebesgue measure) then the functional is infinite. The expres-
sion (3.2) is a generalization of the large deviation functionals derived for open systems
(see [2, 6, 11] for reviews). The condition (3.3) at the battery follows from (2.2), as local
equilibrium is still satisfied in the hydrodynamic large deviation regime.

To compute the probability of observing an atypical density trajectory (ρ(t, x))0≤t≤T

P[0,T N2]
(
ρ(t, x)

)

 exp

(−N F[0,T ]
(
ρ
))

, with F[0,T ]
(
ρ
) = inf

q
F̂[0,T ]

(
ρ,q

)
, (3.4)

one has to optimize F̂[0,T ]
(
ρ,q

)
over all the currents which are compatible with the density

(3.1) and which can be written as

q(t, x) = j (t) −
∫ x

0
∂tρ(t, u) du, (3.5)

where j (t) is the current at 0. Optimizing (3.2) over j (t) implies

∀t > 0, 0 =
∫ 1

0
dx

j (t) − ∫ x

0 ∂tρ(t, u) du + ∂xρ(t, x)

σ (ρ(t, x))
. (3.6)

We introduce an auxiliary function H such that

q(t, x) = −∂xρ(t, x) + σ(ρ(t, x))∂xH(t, x), (3.7)

and get from (3.6)

0 =
∫ 1

0
dx

q(t, x) + ∂xρ(t, x)

σ (ρ(t, x))
=

∫ 1

0
dx ∂xH(t, x) = H(t,1) − H(t,0).

This leads to a continuity condition on H at the battery

H(t,0) = H(t,1). (3.8)

For a trajectory (ρ(t, x))0≤t≤T , there exists H satisfying (3.7) and such that

∂tρ(t, x) = ∂2
xρ(t, x) − ∂x

(
σ(ρ(t, x))∂xH(t, x)

)
, (3.9)

thus the functional (3.4) reads

F[0,T ]
(
ρ
) = 1

2

∫ T

0
dt

∫ 1

0
dx σ(ρ(t, x))

(
∂xH(t, x)

)2
. (3.10)

Note that finding the optimal trajectories (H,ρ) is equivalent to finding the optimal (q,ρ).
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3.2 Steady State Large Deviations

Following [1], the density large deviations for the steady state can be computed by using the
hydrodynamic large deviations. For any smooth function λ(x) in [0,1], one defines

G(λ) = lim
N→∞

1

N
log

〈

exp

(
N∑

i=1

λ

(
i

N

)
ηi

)〉

, (3.11)

which is given according to [1] by

G(λ) = lim
T →∞

sup
ρ

{∫ 1

0
dx λ(x)ρ(0, x) − F[−T ,0]

(
ρ
)}

, (3.12)

where F[−T ,0] is given by (3.10). The supremum ranges over all the density trajectories
ρ(t, x) in the macroscopic time interval [−T ,0] which are equal to the steady state ρ̄(x) at
time −T .

Given the function λ and a time −T , we look for the optimal density trajectory ρ in
the variational problem (3.12). To determine this optimal trajectory, we consider a variation
ρ → ρ + ϕ and H → H + h. From (3.9), ϕ and h satisfy

∂tϕ = ∂2
xϕ − ∂x

(
σ ′(ρ)H ′ϕ + σ(ρ)h′

)
. (3.13)

To simplify notations, we have omitted the (t, x) dependence and used the shorthand H ′ =
∂xH(t, x).

The conditions (3.3) become

ϕ(t,1)

ρ(t,1)(1 − ρ(t,1))
= ϕ(t,0)

ρ(t,0)(1 − ρ(t,0))
,

∫ 1

0
dx ϕ(t, x) = 0. (3.14)

As the density is equal to ρ̄ at time −T then ϕ(−T ,x) = 0.
For an optimal trajectory ρ, the first order perturbation in ϕ in the variational problem

(3.12) should be equal to 0 so that

∫ 1

0
dxλ(x)ϕ(0, x) −

∫ 0

−T

dt

∫ 1

0
dx

(
1

2
σ ′(ρ)

(
H ′)2

ϕ + σ(ρ)H ′h′
)

= 0. (3.15)

Integrating by parts and using (3.13), one gets at time t

∫ 1

0
dx σ(ρ)H ′h′

= −
∫ 1

0
dx

(
∂x

(
σ(ρ)h′))H + (

H(t,1)σ (ρ(t,1))h′(t,1) − H(t,0)σ (ρ(t,0))h′(t,0)
)

=
∫ 1

0
dx

(
∂tϕ − ∂2

xϕ + ∂x

(
σ ′(ρ)H ′ϕ

))
H

+ (
H(t,1)σ (ρ(t,1))h′(t,1) − H(t,0)σ (ρ(t,0))h′(t,0)

)
.
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Another integration by parts leads to

∫ 0

−T

dt

∫ 1

0
dx σ(ρ)H ′h′

= −
∫ 0

−T

dt

∫ 1

0
dx

[
ϕ∂tH − ϕ′H ′ + ϕσ ′(ρ)(H ′)2

]

+
∫ 1

0
dx ϕ(0, x)H(0, x) +

∫ 0

−T

dt
[
H(t,1)j (t,1) − H(t,0)j (t,0)

]
, (3.16)

where j (t, x) = −ϕ′(t, x) + σ ′(ρ(t, x))H ′(t, x)ϕ(t, x) + σ(ρ(t, x))h′(t, x) is the current
variation q → q + j . The current j (t, x) is continuous at the battery (this can be checked
by combining the condition

∫ 1
0 dxϕ(t, x) = 0 and (3.13) which says that ∂tϕ = −j ′). As H

is also continuous at the battery (3.8), the last boundary term in (3.16) vanishes. One has

∫ 0

−T

dt

∫ 1

0
dx σ(ρ)H ′h′

=
∫ 0

−T

dt

∫ 1

0
dx

[
ϕ

(−∂tH − ∂2
xH − σ ′(ρ)(H ′)2

)]

+
∫ 1

0
dx ϕ(0, x)H(0, x) +

∫ 0

−T

dt
[
H ′(t,1)ϕ(t,1) − H ′(t,0)ϕ(t,0)

]
.

Thus for any perturbation ϕ, the condition (3.15) can be rewritten

∫ 0

−T

dt

∫ 1

0
dx

[
ϕ

(
∂tH + ∂2

xH + 1

2
σ ′(ρ)(H ′)2

)]
+

∫ 1

0
dx

(
λ(x) − H(0, x)

)
ϕ(0, x)

−
∫ 0

−T

dt
[
σ(ρ(t,1))H ′(t,1) − σ(ρ(t,0))H ′(t,0)

] ϕ(t,0)

σ (ρ(t,0))
= 0, (3.17)

where we used the identity (3.14).
Combining (3.17) and (3.9), the evolution equations for the optimal trajectory in (3.12)

are

∀t ∈ [−T ,0],
{

∂tρ = ∂2
x ρ − ∂x(σ (ρ)H ′),

∂tH = −∂2
xH − 1

2σ ′(ρ)(H ′)2,
(3.18)

with boundary conditions

∀x ∈ [0,1], ρ(−T ,x) = ρ̄(x), H(0, x) = λ(x). (3.19)

We also have that at the battery, for any time t < 0,

pρ(t,1)(1 − ρ(t,0)) = qρ(t,0)(1 − ρ(t,1)), ρ ′(t,0) = ρ ′(t,1), (3.20)

H(t,0) = H(t,1), ρ(t,1)(1 − ρ(t,1))H ′(t,1) = ρ(t,0)(1 − ρ(t,0))H ′(t,0).

(3.21)
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The boundary conditions follow from (3.3), (3.8) and (3.17). The continuity of ρ ′ in (3.20)
is a consequence of the continuity of the current (3.7) at the battery and of (3.21). We stress
the fact that H(0, x) = λ(x) in (3.19) may not satisfy the boundary conditions (3.21).

The bulk evolution equations (3.18) have already been derived in previous works [1, 8,
12], but the boundary conditions (3.20), (3.21) are specific to the battery model.

3.3 Linearized Equations

The two-point correlations in the steady state can be obtained by taking the second derivative
of G(λ) at λ = 0 (see (3.11)) [1, 11]. This can be understood as follows. For a given N , one
has at the second order in λ

1

N
log

〈

exp

(
N∑

i=1

λ

(
i

N

)
ηi

)〉

= 1

N

N∑

i=1

(

λ

(
i

N

)
〈ηi〉 + 1

2
λ

(
i

N

)2

〈ηi〉(1 − 〈ηi〉)
)

+ 1

2N

N∑

i �=j

λ

(
i

N

)
λ

(
j

N

)〈
ηi;ηj

〉 + o(λ2), (3.22)

where 〈ηi;ηj 〉 = 〈ηiηj 〉 − 〈ηi〉〈ηj 〉 is the connected two-point correlation function. The
above expansion amounts to perturbing the system around the steady state ρ̄(x) (2.10).

For N large, one expects from (3.11) and (3.22) that

G(λ) =
∫ 1

0
dx ρ̄(x)λ(x) + ρ̄(x)(1 − ρ̄(x))

λ(x)2

2

+
∫ 1

0
dx

∫ 1

x

dy C(x, y)λ(x)λ(y), (3.23)

where C(x, y) is the macroscopic non-equilibrium two-point correlation function

〈ηi;ηj 〉 = 1

N
C

(
i

N
,

j

N

)
, (3.24)

at the leading order in N . C(x, y) will be computed in (3.37). We stress the fact that the
equality (3.23) rests on the assumption that one can interchange the limits N → ∞ and
λ → 0.

Our goal now is to compute G(λ) to the second order in λ from the variational problem
(3.12) and to deduce from it C(x, y) (3.23). To any λ, one can associate an optimal density
ρλ which minimizes the variational problem (3.12). By construction the density at time 0
satisfies ρλ(0, x) = δG(λ)

δλ
so that expanding ρλ(0, x) to the first order in λ will lead to the

second derivative of G(λ). One can see from (3.23) that

ρλ(0, x) = ρ̄(x) + ρ̄(x)(1 − ρ̄(x))λ(x) +
∫ 1

0
dy C(x, y)λ(y). (3.25)

To determine ρλ for small λ, we linearize the optimal evolution (3.18) around the steady
state profile ρ̄ (2.10). For the sake of notation, we drop the subscript λ in ρλ and decompose
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the trajectory as ρλ = ρ̄ + ϕ and H = h, where ϕ and h are small. At the first order, (3.18)
becomes

∀t ∈ [−T ,0],
{

∂tϕ = ∂2
xϕ − ∂x(σ (ρ̄)h′),

∂th = −∂2
xh,

(3.26)

and the boundary conditions (3.19), (3.20), (3.21) lead to

∀x ∈ [0,1], ϕ(−T ,x) = 0, h(0, x) = λ(x), (3.27)

and

ϕ(t,1)

σ (ρ−)
= ϕ(t,0)

σ (ρ+)
, ϕ′(t,0) = ϕ′(t,1), (3.28)

h(t,1) = h(t,0), σ
(
ρ−)

h′(t,1) = σ
(
ρ+)

h′(t,0). (3.29)

Note that (3.28) has been obtained by linearizing (3.20) and that h is defined up to a constant
which does not influence the evolution of the density.

The coupled equations (3.26) can be solved by integrating the heat equation. We first
start with the second equation. The Green’s function G2 associated to the Laplacian with
boundary conditions (3.29) satisfies for any y in (0,1)

∂tG
2
t (x, y) = ∂2

xG2
t (x, y), with G2

t (1, y) = G2
t (0, y), a∂xG

2
t (1, y) = ∂xG

2
t (0, y),

(3.30)

with G2
0(x, y) = δx=y and

a = σ(ρ−)

σ (ρ+)
. (3.31)

The function h follows the backward heat equation on [−T ,0] with final data h(0, y) = λ(y)

at time 0. Therefore, we can write

∀t ∈ [−T ,0], h(t, x) =
∫ 1

0
G2

−t (x, y)λ(y) dy.

We turn now to the evolution of ϕ in (3.26) which follows the heat equation with a source
term depending on h. The Green’s function G1 associated to the Laplacian with boundary
conditions (3.28) satisfies for y in (0,1)

∂tG
1
t (x, y) = ∂2

xG1
t (x, y), with G1

t (1, y) = aG1
t (0, y), ∂xG

1
t (1, y) = ∂xG

1
t (0, y),

(3.32)

with G1
0(x, y) = δx=y . Given ϕ(−T ,y) = 0 at time −T

∀t ∈ [−T ,0], ϕ(t, x) = −
∫ t

−T

ds

∫ 1

0
dy G1

t−s(x, y)∂y

(
σ(ρ̄(y))∂yh(s, y)

)
.



A Diffusive System Driven by a Battery or by a Smoothly Varying Field 659

One can check directly that the Green’s function solution of (3.32) is given by

G1
t (x, y) = 2

a + 1
α(x) + 4

a + 1

∞∑

k=1

exp
( − (2kπ)2t

)(
α(x) cos(2πkx) cos(2πky)

+ α(1 − y) sin(2πkx) sin(2πky)

+ 4kπ(1 − a)t sin(2πkx) cos(2πky)
)
, (3.33)

with α(x) = ax + 1 − x and a = σ(ρ−)

σ (ρ+)
. One can also check that the Green’s function G2

which solves (3.30) is given by

G2
t (x, y) = G1

t (y, x). (3.34)

In Appendix A, the construction of the Green’s functions is explained.
We are going to relate ϕ(0, x) and λ(x). The density fluctuation at the final time reads

ϕ(0, x) = −
∫ 0

−T

ds

∫ 1

0
dy

∫ 1

0
dw G1

−s(x, y)∂y

(
σ(ρ̄(y))∂yG

2
−s(y,w)

)
λ(w),

which is equivalent to

ϕ(0, x) = −
∫ 1

0
dw

[∫ T

0
ds

∫ 1

0
dy G1

s (x, y)∂y

(
σ(ρ̄(y))∂yG

2
s (y,w)

)]
λ(w). (3.35)

Let J = ρ+ − ρ− be the rescaled mean current (for N large J = Nq̂ with q̂ introduced
in (2.6)). In Appendix B, it is shown that (3.35) can be rewritten as

ϕ(0, x) = 1

2
σ(ρ̄(x))λ(x) +

∫ 1

0
dy C(x, y)λ(y), (3.36)

where the long range correlations are given by

C(x, y) = − 2

(a + 1)2

(
σ(ρ+) + σ(ρ−)

2
+ J 2

3

)
(ax + 1 − x)(ay + 1 − y)

− 2J 2
∫ ∞

0
ds

[∫ 1

0
dzG1

s (x, z)G1
s (y, z) − G1

s (x,0)G1
s (y,0)

]
. (3.37)

Since ρλ(0, x) = ρ̄(x) + ϕ(0, x), this determines the correlation function in (3.25).
Note that when J = 0 then ρ+ = ρ−, a = 1 and the correlations reduce to C(x, y) =

− σ(ρ̄)

2 which are the correlations of the canonical measure (see also the discussion at the
end of Sect. 5.1).

4 The Macroscopic Approach for the Slowly Varying Field

In Sect. 2.2, a microscopic dynamics driven by a weak field E(x) was introduced. We con-
sider now a general diffusive system at a macroscopic level and write down the two-point
correlation function which generalizes (3.37) to an arbitrary weak field E(x). In the limit
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where E(x) becomes a δ-function, we will see that one can recover the correlations of the
battery model (3.37).

The main advantage of the calculations of this section is that the effect of the battery is
smoothened over the whole system through the function E(x), so that there are no longer
boundary conditions such as (3.20) or (3.21) at the battery and the functions H(t, x) and
ρ(t, x) become simply periodic functions of the space variable x. One difficulty is that for
a generic E(x) the steady state profile ρ̄(x) and the Green’s functions G1 and G2 are not
known explicitly and we have to make a few assumptions on the convergence of hydrody-
namic equation (4.5) to the steady state ρ̄(x) or on the long time behavior of the Green’s
functions (4.18).

4.1 The Variational Problem

Our starting point is that the large deviation functional (3.2) of a macroscopic trajectory
(ρ(t, x), q(t, x))0≤t≤T which, for a general diffusive system is characterized by two func-
tions D(ρ) and σ(ρ), takes the following form [3, 6] in presence of a driving field E

F̂ E
[0,T ]

(
ρ,q

) =
∫ T

0
dt

∫ 1

0
dx

(q(t, x) + D(ρ(t, x))∂xρ(t, x) − E(x)σ (ρ(t, x)))2

2σ(ρ(t, x))
.

The SSEP with a weak field introduced in Sect. 2.2 corresponds to the functions D(ρ) = 1
and σ(ρ) = 2ρ(1 − ρ). Following exactly the same steps as in Sect. 3.1, one gets, by opti-
mizing over the current j (t), defined in (3.5), that (3.7) becomes

q(t, x) = −D(ρ(t, x))∂xρ(t, x) + σ(ρ(t, x))[E(x) + ∂xH(t, x)], (4.1)

where H(t, x) is periodic in space (H(t, x) = H(t, x + 1)). This implies that the time de-
pendent density profile ρ is related to H by

∂tρ(t, x) = ∂x

(
D(ρ(t, x))∂xρ(t, x)

)
− ∂x

(
σ(ρ(t, x))[E(x) + ∂xH(t, x)]

)
, (4.2)

(instead of (3.9)) and the density large deviation functional is given by

F E
[0,T ]

(
ρ
) = 1

2

∫ T

0
dt

∫ 1

0
dx σ(ρ(t, x))

(
∂xH(t, x)

)2
, (4.3)

as in (3.10).
To evaluate G defined in (3.11), (3.12) we proceed as in Sect. 3.2 and determine the

optimal dynamical fluctuation starting from the steady state ρ̄(x) given as the solution of

−D
(
ρ̄(x)

)
ρ̄ ′(x) + E(x)σ

(
ρ̄(x)

) = J , (4.4)

where J is the steady state current. In Appendix C, we check that for regular coefficients
σ(ρ),D(ρ) > 0 and E(x) considered here (4.4) has a unique solution. We shall further
assume that the hydrodynamic evolution

∂tρ = ∂x

(
D(ρ)∂xρ − E(x)σ (ρ)

)
, (4.5)

converges to the steady state profile ρ̄(x) (4.4).
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As in Sect. 3.2, one considers a small variation ρ → ρ + ϕ,H → H + h of ρ(t, x) and
of H(t, x) and one gets from (4.2) that (3.13) becomes

∂tϕ = ∂2
x

(
D(ρ)ϕ

)
− ∂x

(
E(x)σ ′(ρ)ϕ + σ ′(ρ)H ′ϕ + σ(ρ)h′

)
. (4.6)

Then following exactly the same steps as in Sect. 3.2, one ends up with (3.18) replaced by

∂tρ = ∂x

(
D(ρ)∂xρ − E(x)σ (ρ) − σ(ρ)∂xH

)
, (4.7)

∂tH = −D(ρ)∂2
xH − E(x)σ ′(ρ)∂xH − 1

2
σ ′(ρ)

(
∂xH

)2
, (4.8)

with the boundary conditions at times −T and 0 as in (3.19)

∀x ∈ [0,1], ρ(−T ,x) = ρ̄(x), H(0, x) = λ(x). (4.9)

The spatial boundary conditions (3.20), (3.21) are now replaced by the requirement that
H(t, x) and ρ(t, x) are smooth periodic functions of the space variable x (except possibly
at time t = 0).

4.2 Small Variations of the Density

In order to determine the correlation function CE(x, y) as in (3.25) we need to solve the
above equations (4.7)–(4.9) to first order in λ(x), that is to first order in ϕ = ρ − ρ̄ and
h = H . Linearizing (4.7), (4.8), one gets

∂tϕ = ∂x

(
∂x(D(ρ̄)ϕ) − E(x)σ ′(ρ̄)ϕ − σ(ρ̄)∂xh

)
, (4.10)

∂th = −D(ρ̄)∂2
xh − E(x)σ (ρ̄)′∂xh. (4.11)

As in Sect. 3, these equations can be solved in two steps. As the equation for h does not
involve ϕ, it is determined in terms of the Green’s function G2 as

∀t ∈ [−T ,0], h(t, x) =
∫ 1

0
G2

−t (x, y)λ(y) dy, (4.12)

where G2 is solution of

∂tG
2
t (x, y) = D(ρ̄(x))∂2

xG2
t (x, y) + E(x)σ ′(ρ̄(x))∂xG

2
t (x, y), (4.13)

with G2
0(x, y) = δx=y . To solve for ϕ, it is convenient to write ϕ as

ϕ(t, x) = σ(ρ̄(x))

2D(ρ̄(x))
h(t, x) + ψ(t, x). (4.14)

The evolution equation of ψ can be determined from (4.8)

∂tψ = ∂2
x [Dψ] − ∂x[Eσ ′ψ] + h∂x

[
σ ′ρ̄ ′

2
− Eσσ ′

2D

]
,
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where the functions D,σ,σ ′ are evaluated at density ρ̄(x) and E at position x. Using the
fact that the steady state profile ρ̄(x) satisfies (4.4), this becomes

∂tψ = ∂2
x [Dψ] − ∂x[Eσ ′ψ] − J h∂x

[
σ ′

2D

]
. (4.15)

We introduce the Green’s function G1
t as the solution of

∂tG
1
t (x, y) = ∂2

x

(
D(ρ̄(x))G1

t (x, y)
)

− ∂x

(
E(x)σ ′(ρ̄(x))G1

t (x, y)
)

, (4.16)

with G1
0(x, y) = δx=y . Then one can solve (4.15)

ϕ(x,0) = σ(ρ̄(x))

2D(ρ̄(x))
λ(x) − J

∫ T

0
dt

∫
dz

∫
dy G1

t (x, z)∂z

( σ ′(ρ̄(z))

2D(ρ̄(z))

)
G2

t (z, y)λ(y)

−
∫

dz

∫
dy G1

T (x, z)
σ (ρ̄(z))

2D(ρ̄(z))
G2

T (z, y)λ(y). (4.17)

We assume for all x the convergence when T → ∞
G1

T (x, z) = G2
T (z, x) → B(x). (4.18)

For the battery model B(x) has the explicit form 2α(x)

a+1 (see (3.33)). Taking the limit T → ∞
in (4.17) gives the correlation functions

CE(x, y) = −B(x)B(y)

∫
dz

σ(ρ̄(z))

2D(ρ̄(z))

− J
∫ ∞

0
dt

∫
dzG1

t (x, z)∂z

( σ ′(ρ̄(z))

2D(ρ̄(z))

)
G2

t (z, y).

As for the battery model, the Green’s functions satisfy at any time t the symmetry property
(3.34) (see the proof at the end of this Sect. 4.2)

G2
t (x, y) = G1

t (y, x). (4.19)

Thus we finally get the macroscopic expression for the two point correlation functions with
a weak field

CE(x, y) = −B(x)B(y)

∫
dz

σ(ρ̄(z))

2D(ρ̄(z))

− J
∫ ∞

0
dt

∫
dzG1

t (x, z)G1
t (y, z)∂z

( σ ′(ρ̄(z))

2D(ρ̄(z))

)
. (4.20)

Remark 4.1 When E(x) = E is constant, the stationary profile ρ̄ is constant and the sec-
ond term in (4.20) vanishes. Moreover B(x) = 1 (from (4.16), (4.18) and the fact that∫ 1

0 dyG1
t (x, y) = 1) so that CE(x, y) = − σ(ρ̄)

2D(ρ̄)
as expected from [4].

We now sketch a proof of the symmetry (4.19) which follows from the fact that the
operators associated to the evolutions (4.13), (4.16) are adjoint. A solution f (t, x) of

∂tf (t, x) = D(ρ̄(x))∂2
xf (t, x) + E(x)σ ′(ρ̄(x))∂xf (t, x)
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with initial condition f (0, x), is, by definition of G2 (4.13), equal to

f (t, x) =
∫

dy G2
t (x, y)f (0, y).

Now using the fact that

f (t + dt, x) =
∫

dy G2
t+dt (x, y)f (0, y) =

∫
dy G2

t (x, y)f (dt, y),

one can show after an integration by parts that

∂tG
2 = ∂2

y [D(ρ̄(y))G2] − ∂y[E(y)σ ′(ρ̄(y))G2].

Therefore G2
t (x, y) evolves according to the same equation as G1

t (y, x) (4.16) and they
coincide at time t = 0 (G2

0(x, y) = G1
0(y, x) = δx=y ). Thus one concludes that they are

identical.

4.3 The Case of a Battery

To represent our model of a battery as a limit of the smooth continuum problem discussed
above, we consider the field E(x) localized in a certain region of size �x around the origin
with E(x) = 0 outside the region [1 − �x

2 ,1] ∪ [0, �x
2 ] (where 1 is identified to 0 on the

ring). Then one should take the difference of the chemical potentials μ(�x
2 ), μ(1 − �x

2 ) at
the edge of the battery to be fixed. Using the relation between the chemical potential and the
density of systems in local equilibrium, one has

μ

(
�x

2

)
− μ

(
1 − �x

2

)
=

∫ ρ(t, �x
2 )

ρ(t,1− �x
2 )

2D(ρ)

σ(ρ)
dρ = K ′, (4.21)

where the constant K ′ is a characteristic of the battery which remains fixed as �x → 0.
For K ′ > 0, the picture is that for �x small, the density has an abrupt increase for x in

the region where the field is localized and a slow decay for �x
2 < x < 1 − �x

2 . In the limit
�x → 0, the steady state profile ρ̄(x) satisfies −D(ρ̄(x))ρ̄ ′(x) = J for 0 < x < 1 with a
jump from ρ− = ρ̄(1) to ρ+ = ρ̄(0). The current J and the densities ρ− and ρ+ at the edges
of the battery then satisfy

∫ ρ+

ρ−

2D(ρ)

σ(ρ)
dρ = K ′,

∫ 1

0
ρ̄(x) dx = ρ̄,

∫ ρ+

ρ−
D(ρ)dρ = J .

If we assume that in the limit �x → 0, the Green’s function G1
t (x, z) converges to Ĝ1

t (x, z)

then expression (4.20) becomes

Ĉ(x, y) = −B(x)B(y)

∫
dz

σ(ρ̄(z))

2D(ρ̄(z))

− J
∫ ∞

0
dt

∫ 1

0
dz Ĝ1

t (x, z)∂z

( σ ′(ρ̄(z))

2D(ρ̄(z))

)
Ĝ1

t (y, z)

− J
∫ ∞

0
dt

[
σ ′(ρ+)

2D(ρ+)
− σ ′(ρ−)

2D(ρ−)

]
Ĝ1

t (x,0)Ĝ1
t (y,0). (4.22)
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It is then easy to check that this expression of the pair correlation functions, for a general
diffusive system, reduces to the one of the battery model (3.37) when one takes D(ρ) = 1
and σ(ρ) = 2ρ(1 − ρ). For the latter choice of D and σ , Ĝ1

t coincides with the Green’s
function (3.33).

5 Comparison with the Open System and with Numerical Simulations

5.1 Comparison with the Open System

For open diffusive non-equilibrium systems, the steady state has long range correlations
which scale like 1/N for a one-dimensional chain of length N . The two-point correlation
function of the SSEP in contact with reservoirs at densities ρa , ρb is given by [15, 27]

1 ≤ i < j ≤ N, 〈ηi;ηj 〉open = 1

N
Copen

(
i

N
,

j

N

)
,

with

x < y, Copen(x, y) = −J 2
openx(1 − y), (5.1)

where Jopen = ρa − ρb stands for the steady state current.
The SSEP on a ring driven by a battery can be interpreted as the canonical non-

equilibrium counterpart of the SSEP driven by reservoirs. By tuning the mean density ρ̄

and the asymmetry (p, q), the boundary conditions at the battery ρ+, ρ− (2.9) can be cho-
sen to be equal to ρa , ρb so that both systems have the same steady state density profile
and the same steady state currents J = Jopen. In both models local equilibrium holds and
implies that at the leading order both steady state statistics are given locally by a product
Bernoulli measure with the same density. In this sense, equivalence of ensembles is also sat-
isfied in non-equilibrium. In order to understand more precisely the interplay between the
non-equilibrium correlations, the canonical constraint and the driving mechanism we are
going to compare the correlation functions (3.37) and (5.1) (as well as (4.20)).

Expression (5.1) is related to the inverse of the Laplacian �Dir in [0,1] with Dirichlet
boundary conditions. Let GDir

s = exp(−s�Dir) be the corresponding Green’s function, then
we know from [4, 27] that

Copen(x, y) = −J 2
(
�Dir

)−1
(x, y). (5.2)

The inverse of the one-dimensional Laplacian �Dir coincides with the expression in (5.1).
The relation (5.2) can be rewritten in terms of the Green’s function GDir

s as a time dependent
integral

Copen(x, y) = −2J 2
∫ ∞

0
ds GDir

2s (x, y)

= −2J 2
∫ ∞

0
ds

∫ 1

0
dzGDir

s (x, z)GDir
s (y, z), (5.3)

where J = Jopen. In the same way, the correlation function for the weak field (4.20) solves
an equation which does not depend on time. Let Lx be the linearized operator introduced in
(4.16)

Lx = ∂2
x

(
D(ρ̄(x)) ·

)
− ∂x

(
E(x)σ ′(ρ̄(x)) ·

)
.

Then (4.20) is equivalent to solve the equation in the periodic domain [0,1]2
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(Lx + Ly)CE(x, y) = −J ∂x

( σ ′(ρ̄(x))

2D(ρ̄(x))

)
δx=y, with

∫ 1

0

∫ 1

0
dx dy CE(x, y) = 0.

(5.4)

This is similar to equation (4.4) of [4].
The response to a small drive of the open and close systems is different. For a small

current J , when the mean density ρ̄ �= 1/2 then the long range correlation (3.37) is of
order J . Instead (5.1) scales like J 2. To see this, we first note that in the battery model the
mean density profile is linear and

∫ 1
0 dx ρ̄(x) = ρ−+ρ+

2 = ρ̄. Thus

ρ− = ρ̄ − J
2

, ρ+ = ρ̄ + J
2

, (5.5)

where the mean current is given by J = ρ+ − ρ−. Expanding (3.37) to the first order in J
leads to

C(x, y) = −σ(ρ̄)

2

(
1 + σ ′(ρ̄)

σ (ρ̄)
J (1 − x − y)

)
, (5.6)

where we used the fact that a = 1 − σ ′(ρ̄)

σ (ρ̄)
J to first order in J . We note that this coincides

with the first order expansion of the correlations (6.2) for the canonical measure associated
to the product measure. At the order J 2 the non equilibrium contributions appear and (3.37)
no longer matches with (6.2).

5.2 The Battery Model at Density 1/2

An explicit expression of the two-point correlations can be obtained by plugging in (3.37)
the expression (3.33) of G1

s . For general mean density, this expression is rather complicated.
However, several simplifications occur when the mean density is equal to 1/2 and in the rest
of this section we will focus on this case.

At mean density equal to 1/2, the relation (5.5) implies that the densities at the bat-
tery satisfy ρ− = 1 − ρ+ so that a = σ(ρ−)

σ (ρ+)
= 1 and the boundary conditions (3.30), (3.32)

simplify. In particular G2
t (x, y) = G1

t (x, y) and the Green’s functions are associated to the
Laplacian on the ring [0,1]

G1
t (x, y) = 1 + 2

∞∑

k=1

exp
( − (2kπ)2t

)
cos(2πk(x − y)).

As G1
t (y, z) = G1

t (z, y), one gets

∫ ∞

0
ds

∫ 1

0
dzG1

s (x, z)G1
s (z, y) − G1

s (x,0)G1
s (y,0)

=
∫ ∞

0
ds G1

2s(x, y) − G1
s (x,0)G1

s (y,0)

=
∑

k≥1

cos(2πk(x − y))

(2kπ)2
− 2

∞∑

k=1

cos(2πkx) + cos(2πky)

(2kπ)2

− 4
∞∑

k,n≥1

cos(2πnx) cos(2πky)

(2π)2(k2 + n2)
.
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From the identity

∀x ∈ [0,1], 2
∑

k≥1

cos
(
2πkx

)

(2kπ)2
= −1

2
x(1 − x) + 1

12
.

We deduce that for x < y

∫ ∞

0
ds

∫ 1

0
dzG1

s (x, z)G2
s (z, y) − G1

s (x,0)G1
s (y,0)

=
∫ ∞

0
ds G1

2s(x, y) − G1
s (x,0)G1

s (y,0)

= −1

4
(y − x)(1 + x − y) + 1

24
+ 1

2
x(1 − x) + 1

2
y(1 − y) − 1

6

− 4
∞∑

k,n≥1

cos(2πnx) cos(2πky)

(2π)2(k2 + n2)
.

Finally when the mean density is equal to 1/2 then (3.37) can be rewritten for x < y

C(x, y) = −1

2
σ(ρ+) + 1

12
J 2 − J 2

(
1

2
(x + y)(1 − (x + y)) + x

)

+ 8J 2
∞∑

k,n≥1

cos(2πnx) cos(2πky)

(2π)2(k2 + n2)
. (5.7)

We stress the fact that the correlation function diverges when both x, y approach the battery.

Fig. 1 The dashed line represents the theoretical prediction (5.7) of C(x, x) at mean density ρ̄ = 1/2. The
correlation N〈ηi ;ηi+1〉 between the sites i and i + 1 versus x = i/N is represented for systems of sizes
64 and 128 with 25 × 109 updates per site. The results for L = 128 lie between those of L = 64 and the
theoretical predictions
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In Fig. 1, we compare the exact expression (5.7) to the results of a simulation, for N = 64
and N = 128 for 25 × 109 updates per site. The agreement is very good. As our data for size
N = 128 lies between the data for N = 64 and the theoretical prediction, it is reasonable to
believe that the prediction does represent the N → ∞ limit.

6 Some Solvable Models

6.1 Zero Range Process

We study now the ZRP driven by a battery defined in Sect. 2.3. If p = q then the dynamics
is reversible wrt the product measure

⊗N

i=1 νφ , where the measure at each site is given by

νφ(k) = 1

Zφ

φk

g(k)! , with g(k)! =
k∏

i=1

g(i),

where Zφ is the normalization factor and we used the convention g(0)! = 1.
Invariant measures of the ZRP have been determined for spatially varying jump rates in

[17] (see (26)) and the battery model is a special case of these more general results. For
the sake of completeness, we show below that for p �= q , the invariant measure is a product
measure with a canonical constraint.

For any β such that (q − p)β > 0, we introduce

ν̄β =
N⊗

i=1

νφi
, with φi = β

(
(i − 1) + p(N − 1) + 1

q − p

)
. (6.1)

Note that the measure ν̄β is similar to the stationary measure of a ZRP in contact with
reservoirs [23].

The invariant measure of the ZRP with a battery on a ring of length N with M particles is
the measure ν̄β (6.1) conditioned to a total number of particles equal to M . The conditional
measure is independent of β .

In order to check that ν̄β is invariant, we first introduce the generator of the zero range
process

Lf (η) =
∑

i �=1,N

g(ηi)
[
(f (η(i,i+1)) − f (η)) + (f (η(i,i−1)) − f (η))

]

+ g(η1)
[
q(f (η(1,N)) − f (η)) + (f (η(1,2)) − f (η))

]

+ g(ηN)
[
p(f (η(N,1)) − f (η)) + (f (η(N,N−1)) − f (η))

]
,

where ηi,j is the modified configuration after a jump from i to j . It is enough to show that
for any function f then ν̄β(Lf ) = 0.

ν̄β(Lf ) =
∑

η

ν̄β(η)
∑

i �=N

g(ηi)(f (η(i,i+1)) − f (η)) + g(ηi+1)(f (η(i+1,i)) − f (η))

+ qg(η1)(f (η(1,N)) − f (η)) + pg(ηN)(f (η(N,1)) − f (η))
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=
∑

η

∑

i �=N

ν̄β(η)f (η)

[
g(ηi+1)

(
1 + φi − φi+1

φi+1

)
− g(ηi+1)

+ g(ηi)

(
1 + φi+1 − φi

φi

)
− g(ηi)

]

+ ν̄β(η)f (η)

[
qg(ηN)

(
1 + φ1 − φN

φN

)
− qg(η1)

+ pg(η1)

(
1 + φN − φ1

φ1

)
− pg(ηN)

]

=
∑

η

∑

i �=N

ν̄β(η)f (η)(φi − φi+1)

[
g(ηi+1)

φi+1
− g(ηi)

φi

]

+ ν̄β(η)f (η)

[
g(ηN)

(
q − p + q

φ1 − φN

φN

)
+ g(η1)

(
p − q + p

φN − φ1

φ1

)]
.

Since φi varies linearly according to (6.1), we obtain

ν̄β(Lf ) = ν̄β

(
f (η)

(
β

[
g(η1)

φ1
− g(ηN)

φN

]
+ g(ηN)

(
qφ1 − pφN

φN

)

+ g(η1)

(
pφN − qφ1

φ1

)))
= 0.

The last equality follows from (6.1) which implies that qφ1 − pφN = β .
The number of particles being preserved by the dynamics, the invariant measure is ob-

tained by conditioning ν̄β to have M particles.
The macroscopic approach is consistent with the expression of the invariant measure.

The diffusion and conductivity coefficients of the ZRP satisfy D(ρ) = σ ′(ρ)/2. Therefore
in the case of a slowly varying weak field, the non-equilibrium part of the correlations CE

in (4.20) vanishes and only the canonical constraint remains.

6.2 Independent Variables and Canonical Constraints

We are going to compute the scaling limit of the truncated two-point correlations in prod-
uct measures with canonical constraints. By analogy with the measures found in the pre-
vious section, we consider a chain of N independent variables {ηi}0≤i≤N with densities
ρi = ρ̄(i/N) which vary slowly from site to site.

Let {νρ}ρ be a family of measures with different chemical potentials which are indexed
by their density ρ. The variance of the measure νρ will be denoted by χ(ρ). We consider
the measure μ̄ which is the product measure

⊗N

i=1 νρi
conditioned to have a total number of

particles equal to the integer part of
∑N

i=1 ρ̄(i/N). The density profile of the measure μ̄ is
given by ρ̄(x) and the two-point correlation function scales for large N and x �= y in [0,1]
as

μ̄
(
ηNx;ηNy) = − 1

N

χ
(
ρ̄(x)

)
χ

(
ρ̄(y)

)

∫ 1
0 χ(ρ̄(r)) dr

. (6.2)

These asymptotics are very different from the long range non-equilibrium correlations of
the SSEP with a battery and the same density profile (3.37).
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To derive (6.2), one can approximate the original system in the large N limit by a chain of
Gaussian independent variables under the canonical constraint. Define μ to be the Gaussian
measure of N independent Gaussian variables {Xi}1≤i≤N with variance χi = χ(ρ̄(i/N)) at
site i under the canonical constraint

∑N

i=1 Xi = 0.
To compute the marginal of μ over the two variables {X1,X2}, we integrate over the

N −2 remaining Gaussian variables. Given {X1,X2} the probability density that
∑N

i=3 Xi =
−X1 − X2 is proportional to exp(− 1

2χ̂
(X1 + X2)

2) with χ̂ = ∑N

i=3 χi . Thus the marginal of
μ over the two variables {X1,X2} is Gaussian with correlation matrix

(
1
χ1

+ 1
χ̂

1
χ̂

1
χ̂

1
χ2

+ 1
χ̂

)−1

= 1

χ̂ + χ1 + χ2

(
χ1(χ̂ + χ2) −χ1χ2

−χ1χ2 χ2(χ̂ + χ1)

)

.

For large N , χ̂ 
 N
∫ 1

0 χ(ρ̄(r)) dr , so that the two point correlation scales like

μ(X1;X2) 
 − 1

N

χ1χ2
∫ 1

0 χ(ρ̄(r)) dr
.

Thus (6.2) follows.

7 Conclusion

In this paper, we studied several NESS with a canonical constraint on the particle number
and computed the two-point correlation functions by using a macroscopic approach. We
considered two driving mechanisms: either a microscopic strong field localized on one bond
(the battery model), or a weak field with an intensity which varies smoothly on the macro-
scopic scale. The battery model can be recovered as a singular limit of the smoothly varying
field. Different driving mechanisms lead to different stationary measures with different long
range correlations. In fact, the long range correlations of the canonical models differ also
from the correlations in systems maintained out of equilibrium by reservoirs.
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Appendix A: Green’s Functions

In this appendix, we derive the exact expressions (3.33), (3.34) for the Green’s functions
G1, G2 which satisfy (3.30), (3.32). We recall that a = σ(ρ−)

σ (ρ+)
.

We start with the computation of G1
t introduced in (3.32) which evolves according to

∂tG
1
t (x, y) = ∂2

xG1
t (x, y), with G1

t (1, y) = aG1
t (0, y), ∂xG

1
t (1, y) = ∂xG

1
t (0, y),

(A.1)
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with G1
0(x, y) = δx=y . The Laplacian with boundary conditions (A.1) at the battery is not

self-adjoint, but it can be decomposed on the following basis. We define

f 1
k (x) = (ax + 1 − x) cos(2kπx), f 2

k (x) = sin(2kπx). (A.2)

These functions satisfy the boundary conditions (A.1). Furthermore

∂2
x f 1

k (x) = −(2kπ)2f 1
k (x) + 4kπ(1 − a)f 2

k (x), ∂2
x f 2

k (x) = −(2kπ)2f 2
k (x).

Let f 1
k (t, x), f 2

k (t, x) be the solution at time t of the heat equation with boundary conditions
(3.28) and initial data f 1

k (x), f 2
k (x), then

{
f 1

k (t, x) = exp(−(2kπ)2t)(f 1
k (x) + 4kπ(1 − a)tf 2

k (x)),

f 2
k (t, x) = exp(−(2kπ)2t)f 2

k (x).
(A.3)

The Green’s function G2 introduced in (3.30) satisfies

∂tG
2
t (x, y) = ∂2

xG2
t (x, y), with G2

t (1, y) = G2
t (0, y), a∂xG

2
t (1, y) = ∂xG

2
t (0, y),

(A.4)

with G2
0(x, y) = δx=y . For the Laplacian with boundary conditions (A.4), we can introduce

the basis

g1
k (x) = cos(2kπx), g2

k (x) = (a + x − ax) sin(2kπx), (A.5)

and one has

∂2
x g1

k (x) = −(2kπ)2g1
k (x), ∂2

x g2
k (x) = −(2kπ)2g2

k (x) + 4kπ(1 − a)g1
k (x).

If g1
k (t, x), g2

k (t, x) denote the solution at time t of the heat equation with boundary condi-
tions (A.4) and initial data g1

k (x), g2
k (x), then

{
g1

k (t, x) = exp(−(2kπ)2t)g1
k (x),

g2
k (t, x) = exp(−(2kπ)2t)(4kπ(1 − a)tg1

k (x) + g2
k (x)).

(A.6)

Using the fact that for x, y ∈ (0,1)

∞∑

n=0

cos(2nπ(x − y)) = 1

2
+ 1

2
δx=y,

one can check that

ay + 1 − y

2
+ a + 1

4
δx=y

=
∞∑

k=0

(ay + 1 − y) cos(2kπy) cos(2kπx) + (a + x − ax) sin(2kπy) sin(2kπx)

=
∞∑

k=0

f 1
k (y)g1

k (x) + f 2
k (y)g2

k (x).
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This implies

a + 1

4
δx=y = 1

2
f 1

0 (y)g1
0(x) +

∞∑

k=1

f 1
k (y)g1

k (x) + f 2
k (y)g2

k (x). (A.7)

Thus the Green’s function G1 is given by

a + 1

4
G1

t (x, y) = 1

2
f 1

0 (x) +
∞∑

k=1

f 1
k (t, x)g1

k (y) + f 2
k (t, x)g2

k (y)

= 1

2
f 1

0 (x) +
∞∑

k=1

exp
( − (2kπ)2t

)

×
(
f 1

k (x)g1
k (y) + f 2

k (x)g2
k (y) + 4kπ(1 − a)tf 2

k (x)g1
k (y)

)
. (A.8)

Similarly by exchanging x and y in the r.h.s. of (A.7) one can see that

a + 1

4
G2

t (x, y) = 1

2
f 1

0 (y) +
∞∑

k=1

exp
( − (2kπ)2t

)

×
(
f 1

k (y)g1
k (x) + f 2

k (y)g2
k (x) + 4kπ(1 − a)tf 2

k (y)g1
k (x)

)
. (A.9)

This proves the expression (3.33) and the identity G2
t (x, y) = G1

t (y, x) claimed in (3.34).

Appendix B

In this appendix, we are going to derive the relation (3.25) from (3.35).
We first start by proving some identities. The correlation between x and w is symmetric

so that for any x and w

∫ 1

0
dy G1

s (x, y)∂y

(
σ(ρ̄(y))∂yG

2
s (y,w)

)
=

∫ 1

0
dy G1

s (w,y)∂y

(
σ(ρ̄(y))∂yG

2
s (y, x)

)
.

Using the fact that G1
s (x, y) = G2

s (y, x) (3.34), one gets

∫ 1

0
dy G1

s (x, y)∂y

(
σ(ρ̄(y))∂yG

2
s (y,w)

)

=
∫ 1

0
dy G2

s (y,w)∂y

(
σ(ρ̄(y))∂yG

1
s (x, y)

)
. (B.1)

Expanding each terms of (B.1) leads to the two identities,

∫ 1

0
dy G1

s (x, y)∂y

(
σ(ρ̄(y))∂yG

2
s (y,w)

)

=
∫ 1

0
dy G1

s (x, y)∂yσ (ρ̄(y))∂yG
2
s (y,w) +

∫ 1

0
dy G1

s (x, y)σ (ρ̄(y))∂2
yG2

s (y,w)
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=
∫ 1

0
dy ∂yG

1
s (x, y)∂yσ (ρ̄(y))G2

s (y,w) +
∫ 1

0
dy ∂2

yG1
s (x, y)σ (ρ̄(y))G2

s (y,w).

(B.2)

We introduce the notation [F(y)]y=1
y=0 = F(1) − F(0). Integrating by parts the first term

in the last equation of (B.2), one gets

∫ 1

0
dy ∂yG

1
s (x, y)∂yσ (ρ̄(y))G2

s (y,w)

= −
∫ 1

0
dy G1

s (x, y)∂y

(
∂yσ (ρ̄(y))G2

s (y,w)
)

+ [G1
s (x, y)∂yσ (ρ̄(y))G2

s (y,w)]y=1
y=0

= −
∫ 1

0
dy G1

s (x, y)∂yσ (ρ̄(y))∂yG
2
s (y,w) −

∫ 1

0
dy G1

s (x, y)∂2
y σ (ρ̄(y))G2

s (y,w)

+ [G1
s (x, y)∂yσ (ρ̄(y))G2

s (y,w)]y=1
y=0. (B.3)

By summing the two equalities in (B.2) and simplifying thanks to the identity (B.3), we
finally obtain

2
∫ 1

0
dy G1

s (x, y)∂y

(
σ(ρ̄(y))∂yG

2
s (y,w)

)

=
∫ 1

0
dy ∂2

yG1
s (x, y)σ (ρ̄(y))G2

s (y,w) +
∫ 1

0
dy G1

s (x, y)σ (ρ̄(y))∂2
yG2

s (y,w)

−
∫ 1

0
dy G1

s (x, y)∂2
yσ (ρ̄(y))G2

s (y,w) + [G1
s (x, y)∂yσ (ρ̄(y))G2

s (y,w)]y=1
y=0.

(B.4)

Note that ∂2
y σ (ρ̄(y)) = −4J 2, where J = ρ+ − ρ− is the macroscopic mean current (for

N large J = Nq̂ with q̂ introduced in (2.6)). The discontinuity of the density at the battery
implies ∂yσ (ρ−) − ∂yσ (ρ+) = −4(ρ+ − ρ−)J = −4J 2. Thus integrating (B.4) wrt time
leads to

∫ T

0
ds

∫ 1

0
dy G1

s (x, y)∂y

(
σ(ρ̄(y))∂yG

2
s (y,w)

)

=
∫ 1

0
dy G1

T (x, y)
σ (ρ̄(y))

2
G2

T (y,w) − 1

2
σ(ρ̄(x))δx=w

+ 2J 2
∫ T

0
ds

∫ 1

0
dy G1

s (x, y)G2
s (y,w) − 2J 2

∫ T

0
ds G1

s (x,0)G2
s (0,w).

(B.5)

Letting T go to infinity, one gets from the expression of G1 (3.33) and G2 (3.34)

lim
T →∞

∫ 1

0
dy G1

T (x, y)
σ (ρ̄(y))

2
G2

T (y,w) = 2

(a + 1)2
α(x)α(w)

∫ 1

0
dy σ(ρ̄(y)),

with the notation a = σ(ρ−)

σ (ρ+)
and α(x) = (ax + 1 − x).
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As the steady state is linear, σ(ρ̄(y)) = σ(ρ+) + y(σ (ρ−) − σ(ρ+) + 2J 2) − 2J 2y2,
and we get

lim
T →∞

∫ 1

0
dy G1

T (x, y)
σ (ρ̄(y))

2
G2

T (y,w) = 2

(a + 1)2
α(x)α(w)

(
σ(ρ+) + σ(ρ−)

2
+ J 2

3

)
.

Using (B.5) and the symmetry G1
s (w, z) = G2

s (z,w) (3.34), we have finally shown that

lim
T →∞

∫ T

0
ds

∫ 1

0
dy G1

s (x, y)∂y

(
σ(ρ̄(y))∂yG

2
s (y,w)

)
= −1

2
σ(ρ̄(x))δx=w − C(x,w),

with

C(x,w) = − 2

(a + 1)2

(
σ(ρ+) + σ(ρ−)

2
+ J 2

3

)
(ax + 1 − x)(aw + 1 − w)

− 2J 2
∫ ∞

0
ds

∫ 1

0
dzG1

s (x, z)G1
s (w, z) − G1

s (x,0)G1
s (w,0). (B.6)

The previous expression combined to (3.35) leads to (3.36).

Appendix C

C.1 Uniqueness of the Steady State

We will show the uniqueness of the smooth solutions of (4.4)

∂x

(
D

(
ρ̄(x)

)
ρ̄ ′(x) − E(x)σ

(
ρ̄(x)

)) = 0, (C.1)

for regular coefficients and D positive.
Suppose that ρ1(x), ρ2(x) are two solutions of (C.1) with the same mean density. Then

there is J1 > J2 such that

−D
(
ρ̄1(x)

)
ρ̄ ′

1(x) + E(x)σ
(
ρ̄1(x)

) = J1,

−D
(
ρ̄2(x)

)
ρ̄ ′

2(x) + E(x)σ
(
ρ̄2(x)

) = J2.

If the profiles coincide at x0 then substracting both equations, one has

D
(
ρ̄1(x0)

)[ρ̄ ′
1(x0) − ρ̄ ′

2(x0)] = J2 − J1 < 0.

This implies that when the two solutions cross then ρ̄1 > ρ̄2 before the crossing and ρ̄1 < ρ̄2

after the crossing, so that the solutions cannot cross more than once. But the profiles are
smooth, periodic and have the same mean density, thus they have to cross an even number
of times. This is a contradiction and therefore both profiles have to be equal (J1 = J2).

C.2 Convergence of the Linearized Evolution

We turn now to the convergence of the linearized evolution (4.16)

∂tf (t, x) = ∂2
x

(
D(ρ̄(x))f (t, x)

)
− ∂x

(
E(x)σ ′(ρ̄(x))f (t, x)

)
, (C.2)
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with smooth initial data f (0, x) and mean
∫ 1

0 dxf (0, x) = 1. It is equivalent to consider the
evolution

∂tf (t, x) = ∂x

(
D(ρ̄(x))∂xf (t, x)

)
− ∂x

(
α(x)f (t, x)

)
, (C.3)

with α(x) = −∂xD(ρ̄(x)) + E(x)σ ′(ρ̄(x)). At any time t > 0, f (t, x) can then be inter-
preted as the probability density of a particle evolving on the ring [0,1] with a non ho-
mogeneous diffusion coefficient D(ρ̄(x)) and a drift α(x). As the particle evolves on a
compact set, it will reach a stationary state when t goes to infinity. The limiting density for
the particle position will be denoted by f̄ (x) and it is the unique solution with mean density∫ 1

0 dxf̄ (x) = 1 of

∂x

(
D(ρ̄(x))∂xf̄ (x)

)
− ∂x

(
α(x)f̄ (x)

)
= 0. (C.4)

A way to understand the relaxation to the stationary state is to check that the relative
entropy

S(t) = −
∫ 1

0
dxf (t, x) log

(
f (t, x)

f̄ (x)

)
, (C.5)

is a Lyapunov function for the evolution (C.3). This is a general fact for Markov processes.
Taking the time derivative one has

∂tS(t) =
∫ 1

0
dx

(
D(ρ̄(x))∂xf (t, x) − α(x)f (t, x)

)
∂x log

(
f (t, x)

f̄ (x)

)
. (C.6)

We now note that
∫ 1

0
dx α(x)f (t, x)∂x log

(
f (t, x)

f̄ (x)

)
=

∫ 1

0
dx α(x)f̄ (x)∂x

(
f (t, x)

f̄ (x)

)

=
∫ 1

0
dx D(ρ̄(x))∂xf̄ (x)∂x

(
f (t, x)

f̄ (x)

)
,

where we used (C.4) in the last equality. Combined with (C.6), this leads to

∂tS(t) =
∫ 1

0
dx D(ρ̄(x))

(
f̄ (x)

f (t, x)
∂xf (t, x) − ∂xf̄ (x)

)
∂x

(
f (t, x)

f̄ (x)

)

= 4
∫ 1

0
dx D(ρ̄(x))f̄ (x)

(

∂x

√
f (t, x)

f̄ (x)

)2

. (C.7)

Thus S(t) is a Lyapunov function. A quantitative estimate of the approach to equilibrium
could then be obtained by using a log-Sobolev inequality.
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